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A data set consisting of 712 compounds was used for classification into two classes with respect
to membrane permeation in a cell-based assay: (0) apparent permeability (Papp) below 4 ×
10-6 cm/s and (1) Papp on 4 × 10-6 cm/s or higher. Nine molecular descriptors were calculated
for each compound and Nearest-Neighbor classification was applied using five neighbors as
optimized by full cross-validation. A model based on five descriptors, number of flex bonds,
number of hydrogen bond acceptors and donors, and molecular and polar surface area, was
selected by variable selection. In an external test set of 112 compounds, 104 compounds were
classified and 8 compounds were judged as “unknown”. Among the 104 compounds, 16 were
misclassified corresponding to a misclassification rate of 15% and no compounds were falsely
predicted in the nonpermeable class.

Introduction

Poor absorption, distribution, metabolism, and/or
excretion (ADME) properties are some of the main
reasons for terminating the development of chemical
drug candidates.1 This acknowledgment has resulted in
development and application of a wide range of in vitro
screening tests for classification of compounds with
respect to ADME properties during the early drug
discovery process. Increasingly, generated in vitro data
are used for developing predictive models leading the
way toward in silico ADME methods, reflected in a large
number of recent reviews and meetings on in silico
ADME methodology.1-5 The application of in silico
technology offers considerable potential for reducing the
number of experimental studies required for compound
selection and for improving the success rate.

In the selection of orally bioavailable drug candidates
it is important to predict the absorption properties of
new compounds. Absorption of a compound is driven by
its solubility and membrane permeability. Intestinal
wall active transports and intestinal wall metabolic
events can also influence the absorption and oral
bioavailability of a compound, but such events are
beyond the scope of this study. Here we will focus on in
silico prediction of membrane permeability by passive
diffusion, and we have based our model on experimental
data from two in vitro models of intestinal absorption:
Transport experiments in MDCK (Madin-Darby canine
kidney) Strain I and Caco-2 (human colon carcinoma)

cells. Drug permeability in cell cultures has been shown
to be a useful predictor of drug absorption in vivo.6-9

It is generally accepted that physicochemical descrip-
tors of drug molecules can be useful for predicting drug
absorption. Lipinski et al.10 proposed “the rule of five”
for a preliminary estimation of a compound’s absorption
on the basis of molecular weight, lipophilicity and the
number of hydrogen bond donor and acceptor atoms in
the molecule. Different groups have tried to predict
permeability from calculated properties, and Winiwarter
et al.11 report that the best model of passive intestinal
permeability use the following variables: number of
hydrogen bond donors and polar surface area either
alone or combined with a lipophilicity descriptor.
Raevsky et al.12 showed that the best descriptor of
human intestinal absorption of 32 passive transported
compounds is the sum of hydrogen bond acceptor and
donor values, characterizing the total ability of a
compound to form hydrogen bonds. Of 57 molecular
descriptors, Agatonovic-Kustrin et al.13 found that li-
pophilicity, conformational stability, and intermolecular
interactions (polarity and hydrogen bonding) were the
best descriptors of intestinal absorption. Faassen et al.14

reports good agreement between predicted oral absorp-
tion properties based on water/octanol partition coef-
ficient, polar surface area, and molecular weight and
measured Caco-2 permeabilities. Additionally, PSA has
been applied as a computational filter for membrane
permeability.15,16

We here present an in silico prediction methodology
for membrane permeability classification based on a
large number of in vitro permeability data obtained in
the same laboratory and nine calculated molecular
descriptors. Furthermore, we bring information on
structural fragments that are of importance for the
permeability of compounds.

* Corresponding author. E-mail: HaRe@novonordisk.com. Tel:
+ 45 44 43 03 67. Fax: + 45 44 66 39 39.

† Department of Drug Metabolism, Novo Nordisk A/S.
‡ Department of Protein Structure, Novo Nordisk A/S.
§ Royal Veterinary and Agricultural University.
| Technical University of Denmark.

805J. Med. Chem. 2005, 48, 805-811

10.1021/jm049661n CCC: $30.25 © 2005 American Chemical Society
Published on Web 01/14/2005



Results

The Calibration Set. A total of 712 compounds were
tested for membrane permeation in one of two cell
lines: MDCK Strain I and Caco-2. In the MDCK Strain
I transport experiment, apparent permeability, Papp, was
measured for all compounds in the absorptive direction
(AP to BL). Using the Caco-2 cell monolayers, both
absorptive and secretory Papp was addressed in order
to investigate for polarized transport, e.g. active efflux
of the drug substance due to P-glycoprotein (P-gp)
transport. Experimental data from Caco-2 cells were
only included in the calibration data set if the compound
was not subjected to polarized transport. Thus, only
compounds revealing passive transcellular transport
and only the absorptive (AP-BL) Papp values were
included in the calibration data set. The calibration data
set was grouped into two classes with respect to
membrane permeation in the cell assays: (0) 380
compounds had Papp below 4 × 10-6 cm/s and (1) 332
had Papp on 4 × 10-6 cm/s or higher.

The 712 compounds were from 19 Novo Nordisk
discovery projects and had been tested over a 2-year
period. The complete structures of the compounds
cannot be disclosed at this time because they are in the
discovery stage at Novo Nordisk. To address the struc-
tural diversity of the 712 compounds, a clustering
analysis using 166 MACCS structural keys as descrip-
tors was performed. Of the resulting 437 clusters, the
5 highest populated clusters contained 48, 30, 23, 16,
and 13 members, respectively; the next 94 clusters
contained 2-10 members and 338 clusters were single-
tons.

Distribution for the nine calculated descriptors is
shown in Figure 1, and the distribution was nearly
Gaussian like that for clogP (water/octanol partition
coefficient) and mlogP (Moriguchi partition coefficient),
but more irregular for the other seven descriptors. The
distribution curves for SURF (molecular surface area),
VOL (molecular volume), and MW (molecular weight)

appeared to be bimodal. The mean values for the nine
calculated molecular descriptors are given in Table 1
for the two permeability classes. For all the descriptors,
except for mlogP, the mean values were higher for the
compounds in the nonpermeable group.

The correlations between the nine descriptors are
given in Table 2, and the three descriptors, VOL, SURF,
and MW, were highly correlated. The model with the
highest Cohen’s Kappa value including only one of the
three descriptors was selected. The model was based on
the following five descriptors: SURF, number of flex
bonds (ROT), number of hydrogen bond acceptors (HA)
and donors (HD), and polar surface area (PSA). The
Cohen’s Kappa value was at a maximum (0.72) for k )
5, meaning that the optimal prediction was carried out
by using the five nearest neighbors, see Table 3 for the
classification results with k ) 5.

All 712 compounds were decomposed into ring frag-
ments and functional groups as described in the Ex-
perimental Section. Selected structural groups for which
we found statistical difference in frequency between the
permeability classes is shown in Table 4. The results
suggest that compounds containing one benzene ring
or an amide group were more likely to penetrate
membranes. Structural moieties such as biphenyl,
naphthalene, diketopiperazine, and carboxylic acid had
higher frequencies in compounds in the nonpermeable
class (0). Inclusion of the six structural fragments as
descriptors did not improve the prediction so the pre-
sented classification results are without the structural
descriptors.

The calibration data was investigated for outliers by
finding the Mahalanobis distance from each compound
to the 5th nearest neighbor compound. Most distances
(696) were less than 10, nine distances were between
10 and 20, four were between 20 and 50, and three were
above 50. Any exclusion of these possible outliers with
distances above 10 increased the cross-validation error
rate, and it was decided to maintain all compounds in
the calibration set.

The Test Sets. A total of 112 new compounds which
did not belong to the calibration set were tested for
membrane permeation in MDCK Strain I cells. Fur-

Figure 1. Distribution of the nine descriptors: clogP (water/
octanol partition coefficient), mlogP (Moriguchi partition coef-
ficient), ROT (number of flex bonds), HA and HD (number of
hydrogen bond acceptors and donors), SURF and PSA (mo-
lecular and polar surface area), VOL (molecular volume), and
MW (molecular weight).

Table 1. Calculated Molecular Descriptors and Experimental
Apparent Permeability, Papp, Values for Compounds in the
Calibration Data Seta

class 0
(380 compounds)

class 1
(332 compounds)

total
(712 compounds)

descriptor mean std. dev. mean std. dev. mean std. dev.

clogP 4 2.2 3 1.2 4 1.8
ROT 11 4.0 8 2.4 9 3.7
HA 8 2.2 6 2.1 7 2.4
HD 3 1.2 1 1.1 2 1.4
mlogP 3 1.2 3 1.1 3 1.2
SURF 567 142 447 74 511 130
VOL 551 146 425 78 492 135
MW 492 117 373 78 437 117
PSA 107 35 65 28 87 38
Papp 0.5 1.0 33 25 16 24
a Units and calculation of each descriptor: clogP (water/octanol

partition coefficient), mlogP (Moriguchi partition coefficient), ROT
(number of flex bonds), HA and HD (number of hydrogen bond
acceptors and donors), SURF and PSA (molecular and polar
surface area), VOL (molecular volume), and MW (molecular
weight) are given in the Experimental Section. Permeability class:
(0) Papp below 4 × 10-6 cm/s and (1) Papp on 4 × 10-6 cm/s or higher.
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thermore, the nine molecular descriptors were calcu-
lated for each compound and investigated for outliers
by finding the Mahalanobis distance from each com-
pound to the 5th nearest neighbor compound in the
calibration set. None of these 112 distances were above
13, so the test set compounds were all well within the
space of the calibration set, and none were excluded in
advance.

Mean values for ROT, HA, HD, SURF, and PSA for
the 112 compounds are given in Table 5, and the
classification table of the test set is given in Table 6.
Among the 112 compounds, 8 compounds, corresponding
to 7%, had a maximal posterior weight less than 0.60,
and the permeability class for these compounds was not
predicted. The 8 compounds which were not classified
did not share structure patterns or values for the
calculated parameters that could explain the low pos-
terior weights. Among the 104 compounds there were
classified, 16 were misclassified corresponding to a
misclassification rate of 15%. Among the 53 compounds
predicted into the nonpermeable class, no compounds
were misclassified (Table 6).

To validate our Caco-2 and MDCK cell models, six
reference drugs were tested and the obtained Papp

values are listed in Table 7. Three highly permeable
drugs (metoprolol, propranolol, and verapamil) and
three low permeable drugs (ranitidine, furosemide, and
chloramphenicol) from the list provided in the FDA
Guidance based on the Biopharmaceutical Classification
System (BCS)21 were selected for this study. The results
were in agreement with earlier published data both in
vitro (Papp in Caco-2) and in vivo (fraction of dose
absorbed in human) as depicted in Table 7. The five
descriptors, ROT, HA, HD, SURF, and PSA, were
calculated for each drug, and the descriptors were
applied for classification of permeability. The perme-
ability class was predicted correct for metoprolol, pro-
pranolol, verapamil, furosemide, and chloramphenicol.
Ranitidine was misclassified as permeable (Table 7).

Discussion

Absorption is driven by solubility and permeability
of the compound, as well as interactions with transport-
ers and metabolizing enzymes in the gut wall. Oral
bioavailability in turn depends on a superposition of two
processes: absorption and first-pass metabolism in liver
and gut. The present investigation was limited to
passive diffusion of compounds through cell monolayers
to determine molecular properties of importance for
permeability.

Physicochemical parameter-based estimation meth-
ods of permeability are attractive because of their high

Table 2. Correlation Coefficients for the Nine Descriptors and for Apparent Permeability, Papp

Papp clogP ROT HA HD mlogP SURF VOL MW PSA

Papp 1 -0.048 -0.268 -0.475 -0.558 -0.139 -0.392 -0.404 -0.479 -0.511
clogP -0.048 1 0.431 -0.163 -0.068 0.581 0.566 0.571 0.511 -0.209
ROT -0.268 0.431 1 0.420 0.386 -0.017 0.762 0.739 0.682 0.445
HA -0.475 -0.163 0.420 1 0.636 -0.008 0.524 0.524 0.662 0.836
HD -0.558 -0.068 0.386 0.636 1 -0.083 0.412 0.415 0.501 0.826
mlogP -0.139 0.581 -0.017 -0.008 -0.083 1 0.309 0.323 0.350 -0.198
SURF -0.392 0.566 0.762 0.524 0.412 0.309 1 0.996 0.905 0.469
VOL -0.404 0.571 0.739 0.524 0.415 0.323 0.996 1 0.914 0.452
MW -0.479 0.511 0.682 0.662 0.501 0.350 0.905 0.914 1 0.526
PSA -0.511 -0.209 0.445 0.836 0.826 -0.198 0.469 0.452 0.526 1

Table 3. Cross-Validation Classification of the Calibration
Data Seta

predicted
class 0

predicted
class 1

not
predicted sum

lab test class 0 287 63 30 380
lab test class 1 20 294 18 332
sum 307 357 48 712

a Permeability class: (0) Papp below 4 × 10-6 cm/s and (1) Papp
on 4 × 10-6 cm/s or higher.

Table 4. Occurrence and Frequency of Ring Fragments and
Functional Groups in the Calibration Data Seta

a The frequency (F) was calculated as described in the method
section. Permeability class: (0) Papp below 4 × 10-6 cm/s and (1)
Papp on 4 × 10-6 cm/s or higher. ***Significant difference on a 0.001
test level from the frequency of the structural group in class 0.

Table 5. Calculated Molecular Descriptors and Experimental
Apparent Permeability, Papp, Values for 112 External
Compoundsa

class 0
(73 compounds)

class 1
(39 compounds)

total
(112 compounds)

descriptor mean std. dev. mean std. dev. mean std. dev.

ROT 11 3.4 7 2.4 10 3.7
HA 7 1.7 6 1.3 7 1.6
HD 3 1.4 1 1.0 2 1.5
SURF 583 131 425 83 528 139
PSA 96 25 67 16 85 26
Papp 0.3 0.7 35 27 12 23
a Calculation of each descriptor and units are given in the

Experimental Section. Permeability class: (0) Papp below 4 × 10-6

cm/s and (1) Papp on 4 × 10-6 cm/s or higher.

Table 6. Classification of 112 External Compounds from Five
Nearest Neighbors in the Calibration Data Seta

predicted
class 0

predicted
class 1

not
predicted sum

lab test class 0 53 16 4 73
lab test class 1 0 35 4 39
sum 53 51 8 112

a Permeability class: (0) Papp below 4 × 10-6 cm/s and (1) Papp
on 4 × 10-6 cm/s or higher.
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throughput capacity and possible prediction of perme-
ability category prior synthesis, but methods lacking
information of real physiological conditions can be
vulnerable to false predictions. The method presented
here only misclassified 15% in an external data set, and
no compounds were falsely predicted to belong to the
nonpermeable group.

Poor solubility of compounds can cause problems with
compound precipitation in the cell assays, giving false
permeability results. LogP is a crucial factor governing
passive membrane partitioning; an increase in logP
enhances permeability while reducing solubility. There-
fore, it is important to include logP as a molecular
descriptor at absorption screens as suggested by Lip-
inski et al.10 For ionizable molecules, the effective
lipophilicity at physiological pH will not be the same
as its intrinsic lipophilicity, and the distribution coef-
ficient (logD) will be different from logP. The model is
likely to improve if logD was included as a calculated
property as seen by Winiwarter et al.11 However,
Raevsky et al.12 did not find a correlation between logD
and membrane penetration for 32 compounds. Further-
more, it is of interest that the model presented in this
study did not include the lipophilicity descriptors: clogP
and mlogP.

Hydrogen bonding has been identified as an impor-
tant parameter for describing drug permeability as seen
in several studies,11-13 and this is in agreement with
our findings. In a recent study Winiwarter et al.22 found
that hydrogen bond acceptor descriptors were less
important for prediction of human intestinal perme-
ability.

The calibration set was structural diverse evaluated
by clustering analysis of MACCS structural keys.
However, some bias toward common structure series
within projects was seen. We show evidence that one
benzene ring and one amide are structural groups in
compounds which penetrate membranes. Biphenyl,
naphthalene, diketopiperazine, and carboxylic acid were
shown to be present more frequently in compounds
belonging to the nonpermeable group. An explanation
for the poor permeability could be poor solubility of
compounds containing biphenyl and naphthalene ring
systems causing the compounds to precipitate under the
experimental conditions used. Aromatic ring structures,
like biphenyl and naphthalene, are known to be recog-
nized by P-gp,23,24 and substrates for efflux transporters
would have limited permeability. However, in the
present study compounds subjected to polarized trans-
port, e.g. active efflux due to P-gp transport, were not

included in the calibration set. Compounds containing
a carboxylic acid group will be charged at pH 6.5-7.4
where the transport experiments were performed, and
that could limit the membrane penetration of the
compounds. It has earlier been observed that acids
generally have better oral bioavailability,25 stressing the
importance of pH in in vitro permeability assays.

The apparent permeability was tested for three highly
permeable drugs (metoprolol, propranolol, and vera-
pamil) and two low permeable drugs (ranitidine and
furosemide) from the list in the FDA Guidance based
on the Biopharmaceutical Classification System.21 The
results were in agreement with published data both in
vitro17 and in vivo.18-20 Furthermore, the permeability
class was predicted for the six reference drugs, and the
predictions were correct for metoprolol, propranolol,
verapamil, furosemide, and chloramphenicol. However,
ranitidine was misclassified as permeable. A possible
explanation for the false prediction of the perme-
ability class for ranitidine could be the ranitidines
presumable affinity for cellular efflux pumps as de-
scribed in Yazdanian et al.17 and Lee et al.26

Prediction of permeability of compounds through
Caco-2 and MDCK Strain I cells are important because
they are good models for human intestinal absorption.6-9

But another central question for preclinical studies is
whether the compound is absorbed in rat. Caco-2
permeability data are shown to correlate well with in
vivo data both from rat and human.27,28 In a large study
based on over 1100 drug candidates Veber et al.29

reports that the descriptors molecular flexibility as well
as either polar surface area or total hydrogen bond count
(sum of donors and acceptors) correlate with oral
bioavailability in rat. These findings are in agreement
with our model based on in vitro data.

A growing consensus is that the in silico predictions
are as predictable as data obtained using in vitro tests,
with the advantage that much less investment in
technology, resources, and time is needed. In addition,
and of critical importance, it is possible to screen before
synthesis. The early assessment of ADME properties
will help to select the best candidates for development,
as well as to reject candidates with a low probability of
success.

Conclusions
An in silico methodology for prediction of membrane

permeability was developed based on data from trans-
port experiments in cell cultures for 712 compounds and
the five calculated molecular parameters, number of flex

Table 7. Apparent Permeability (Papp) and Predicted Permeability Class of Six Reference Drugsa

compound
Papp × 10-6 (cm/s)

in MDCKc
Papp × 10-6 (cm/s)

in Caco-2c
reported Caco-2

Papp × 10-6 (cm/s) %Fd
predicted

permeability class

High Permeability Drugs
metoprolol 37.78 ( 0.76 18.21 ( 0.79 43.4 ( 0.717 9518 1
propranolol 34.36 ( 2.26 12.63 ( 0.51 33.9 ( 1.817 10018 1
verapamil 16.60 ( 0.37 7.20 ( 0.26 15.8 ( 1.217 10018 1

Low Permeability Drugs
ranitidine 0.27 ( 0.03 NDe 1.24 ( 0.2517 5019 1
furosemide 0.27 ( 0.01 0.39 ( 0.16 0.03 ( 0.0017 variable20 0
chloramphenicolb 3.15 ( 0.37 ND - - 0
a Permeability class: (0) Papp below 4 × 10-6 cm/s and (1) Papp on 4 × 10-6 cm/s or higher. b Not listed in the FDA Guidance.21 c Some

of the Papp data were presented in the poster: Taub et al. Utilization of optimized in vitro and in silico methodologies for solubility,
permeability, and efflux transport studies in discovery-based compound screening. Benzon Symposium, September 2001, Copenhagen,
Denmark. d Fraction (%) of dose absorbed in human as reported in the literature. e ND: not determined.

808 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 3 Refsgaard et al.



bonds, number of hydrogen bond acceptors and donors,
and molecular and polar surface area. In an external
test set of 112 compounds 93% of the compounds could
be classified in one of two permeability classes: (0) Papp
below 4 × 10-6 cm/s or (1) Papp on 4 × 10-6 cm/s or
higher. The misclassification rate was 15%, and no
compounds were misclassified in the nonpermeable
group. The presented in silico method would be a
valuable tool in the drug discovery process to select the
molecules with the greatest change of success prior to
synthesis.

Experimental Section

Materials. Caco-2 cells were obtained from the American
Type Culture Collection (Manassas, VA). MDCK Strain I cells
were kindly donated by Dr. Weihomogeneity, Chiang Shen
(Los Angeles, CA). All cell culture reagents were purchased
from Life Technologies (Høje Taastrup, Denmark), unless
otherwise noted. [14C]Mannitol was purchased from Amersham
International (Buckinghamshire, UK), and [14C]testosterone,
and [3H]verapamil were purchased from NEN Life Science
Products (Boston, MA). Sodium taurocholic acid, metoprolol,
propranolol, verapamil, ranitidine, furosemide, and chloram-
phenicol were purchased from Sigma-Aldrich (St. Louis, MO).
Hanks’s Balanced Salt Solution (HBSS) and HEPES were
purchased from Invitrogen, Gibco (Denmark). Ultima Gold
scintillion fluid was obtained from Packard BioScience (Gronin-
gen, The Netherlands). All analytical solvents were of HPLC
grade and purity.

Cell Culture. For drug transport experiments, Caco-2 cells
at passage 47 were seeded in culture flasks and passaged in
Dulbecco’s Modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum, penicillin-streptomycin (100
U/ml and 100 µg/mL, respectively), 1% l-glutamine, and 1%
nonessential amino acids. The cells (between passages 48-
82) were seeded onto tissue culture-treated Transwells (Costar,
NY) at a density of 105 cells/cm2. Transport experiments were
subsequently performed on days 26-28 after seeding. The
MDCK Strain I cells (passages 14-30) were seeded onto 1 cm2

polycarbonate filter Transwells (Costar, NY) at a density of
2.2 × 104 cells/cm2. Culture conditions for the MDCK cells were
maintained as has been described previously,30,31 and confluent
cell monolayers were obtained 5 to 7 days postseeding. Caco-2
and MDCK cell monolayer cultures were grown in an atmo-
sphere of 5% CO2-95% O2 at 37 °C. Growth media were
replaced every other day. Transepithelial electrical resistance
(TEER) was measured in Ω cm2, at 37 °C, using an epithelial
voltohmmeter (Millicellers; Millipore, Billerica, MA). Following
subtraction of background TEER, i.e., the resistance exhibited
by the filter alone, the mature Caco-2 cell monolayer exhibited
a TEER > 600 Ω cm2 and the MDCK cell monolayer exhibited
a TEER > 2000 Ω cm2 prior to use in transport experiments.

Drug Permeability Studies. The integrity of the Caco-2
and MDCK monolayer was evaluated via measurement of
[14C]mannitol (0.4 µCi/mL) apparent permeability, Papp, and
monitoring the change in TEER over the course of a 1 h
experiment. In each experiment, [3H]testosterone (0.2 µCi/ml)
was used as a positive control for passive transcellular
transport. In the Caco-2 transport experiments, [3H]verapamil
(0.2 µCi/ml) was used as an internal control for the expression
and function of the P-gp efflux transporter. Prior to the
experiment, growth media was removed from the mature
Caco-2 and MDCK monolayers and the monolayers were
rinsed once with 37 °C HBSS. All drug transport experiments
were carried out using a 10 µM or 50 µM solution of the test
compound. The apical (AP) volume was 400 µL and the
basolateral (BL) volume was 1200 µL. In the MDCK transport
experiments, test compounds were added in the AP compart-
ment at pH 6.5 and 200 µL was removed from the BL
compartment at 15, 30, and 60 min after which the BL
compartment was replenished with 200 µL of fresh, preheated
buffer. In the Caco-2 transport experiments, test compounds

were added to either the AP or BL (donor) compartment at
pH 7.4 and samples were taken from the opposite (receiver)
compartment at 15, 30, and 60 min. The receiver compartment
was replenished with fresh, preheated buffer. At 60 min, a
200 µL sample was taken from the donor compartment in order
to establish the concentration of compound at the end of the
experiment. In the Papp studies using the MDCK cell mono-
layers the HBSS contained 5 mM sodium taurocholate in the
AP compartment. All experiments were conducted at 37 °C.
Filters and cells containing the radioactive controls were
rinsed, excised, and then counted using liquid scintillation
chromatography while samples containing drug were analyzed
using high-performance liquid chromatography (HPLC) or by
LC/MS using a MDS Sciex API 365 triple quadrupole mass
spectrometer (Toronto, Canada).

HPLC and LC/MS Analysis. A reversed-phase HPLC
method was used, applying a Zorbax RX-C8 column (Agilent,
Palo Alto, CA) and a gradient buffer system. A Waters pump,
controller, auto sampler, and photodiode array detector were
used. Mobile phase A consisted of 100% Milli-Q water, and
mobile phase B consisted of 100% acetonitrile; both mobile
phases contained 0.05% trifluoroacetic acid. For LC/MS analy-
sis, a Phenomenex Prodigy column (Torrance, CA) was used.
Mobile phase A consisted of 95% Milli-Q water, 5% methanol,
and mobile phase B consisted of 5% Milli-Q water, 95%
methanol; both mobile phases contained 0.1% formic acid.

Calculation of Permeability. For both Caco-2 and MDCK
transport experiments, the accumulated amount of drug
appearing in the BL (and AP for Caco-2) compartment over
time, dQ/dt, was used to calculate the Papp using the following
equation: Papp )dQ/dt × 1/(AC0), where A is the area of the
filter (1 cm2) and C0 is the initial concentration in the donor
compartment. Depending on the rate of AP to BL or BL to
AP, transport for the different compounds, sink conditions, as
defined by >80% of administered compound remaining in the
donor compartment, may not be maintained over the course
of the 1 h experiment. Papp values were therefore calculated
using the slope of the steady-state rate constant dQ/dt before
sink conditions were no longer present. Thus, the potential
for passive BL to AP or AP to BL (backward) diffusion was
eliminated in the above calculations, providing a more reliable
estimate of absorptive Papp. All experiments were performed
in at least triplicate, and data are expressed as mean (
standard deviation.

Structural Fragments. To address the structural diversity
of the 712 compounds in the calibration dataset, a clustering
analysis using 166 MACCS structural keys as descriptors and
a Tanimoto coefficient of 0.85 was performed.32

Two decomposition schemes were developed to define mo-
lecular equivalence classes.33 The first converted a H-depleted
molecular graph into a list of ring fragments by removing all
atoms and associated bonds not in a ring. The second used
standard definitions for donors and acceptors34 and included
their beta neighborhood into the associated fragment. Over-
lapping fragments were considered as one union fragment. For
both decomposition schemes, each H-depleted molecular graph
were transformed into fragments and represented in a canoni-
cal line notation similar to SLN35 as illustrated in Figure 2
for the drug mizolastine, an antihistamine. All algorithms were
implemented as Cheshire scripts.36 It was subsequent feasible
to apply standard pivoting techniques in a spreadsheet on
records associating compound id, fragment string, and perme-
ability class.

The frequency of a fragment in a permeability class was
calculated as ((number of compounds containing the fragment
in a permeability class) times (total number of compounds))
divided with ((total number of compounds containing the
fragment) times (number of compounds in the permeability
class)). The frequencies of a fragment in a permeability class
were statistically compared by standard binomial techniques.

Calculated Molecular Descriptors. Molecular properties
for molecules were calculated from SD files in the software
Sybyl 6.637 - mostly via built-in functions, but in some cases
using an external program.
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The properties calculated were the following:
mlogP: a rough, but robust estimate of octanol/water

partition coefficient. Originally devised by Moriguchi et al.38,39

MW: molecular weight. This property and all the other ones
described here refer to the largest fragment/molecule only if
more than one is present. Typically, salts/clathrates/hydrates
lose their counterions/solvents/water molecules before the
calculation is performed. This behavior results from the
Concord processing.

HD: number of hydrogen bonds donors. This is a built-in
function of Sybyl.

HA: number of hydrogen bonds acceptors. This is a built-
in function of Sybyl.

ROT: number of rotatable bonds in molecule. This is a
built-in function of Sybyl.

clogP: Pomona College logP (water/octanol partition coef-
ficient). With Sybyl 6.6 Tripos distributed version 4.0 of the
clogP algorithm and version 18 of its associated fragment
database as provided by BioByte Corp.40

VOL: Total molecular volume (Å3) after regularizing the
molecular geometry (in 3-D) via the 4.0.4 version of the
Concord program41 based on SAVol 3.742 using Allinger vdw
radii.

SURF: Total molecular surface area (square Ångström),
based on SAVol 3.7 using Allinger vdw radii.

PSA: Polar surface area (square Ångström), based on SAVol
3.7 using Allinger vdw radii. Polar atoms are oxygens, nitro-
gens, plus hydrogens attached to O and N.

Classification. The method of Nearest-Neighbor classifica-
tion was applied using custom-made m. files for MatLab43

version 6.5 installed with PLS-Toolbox44 version 2.0.0b. The
Mahalanobis distance based on the pooled covariance matrix
across the two groups was used to determine proximity
between compounds. Full leave-one-out cross-validation was
applied to the calibration data set to find the optimal number
of neighbors. The optimal number of neighbors was chosen by
evaluation of plots depicting the number of false positives,45

false negatives,45 Cohen’s Kappa values,46 and nonclassified
compounds, respectively, against the number of neighbors. In
the selection the percentage of false positives, false negatives
and nonclassified compounds were minimized, and the Cohen’s
Kappa value was maximized. Cohen’s Kappa is a measure
related to the false positive and false negative rate and
expresses the improvement over chance of classification.

The applied classification method provided a set of posterior
probabilities of class memberships when predicting new
candidates. This allowed us to distinguish between cases with
obvious class memberships and cases with doubtful class
memberships when predictions of new compounds were carried
out. In the present study the class posterior (Pr) was chosen
to be g0.60 for classification. In this way compounds with low

Pr were not classified. Outlier detection was carried out by
finding the Mahalanobis distance for an individual compound
to the kth nearest neighbor in the calibration data, where k is
the optimal choice.

Variable Selection. In in silico studies, variable selection
is an important element and the selection of a preferred set of
descriptors is crucial to obtain a predictive and robust model.
In the present study 511 subsets covering all possible combi-
nations of the nine descriptors were generated and a model
based on Nearest-Neighbor classification was made for each
subset. Full cross-validation was applied to find the optimal
subset of descriptors. The Pr was set to 0.50, and five nearest
neighbors were used in all 511 models. The Cohen’s Kappa
value was used as a measure of model performance, and
subsets with descriptors giving higher Cohen’s Kappa values
were favored.
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